การออกแบบชุดควบคุมดีซีมอเตอร์แบบไร้แปรงถ่านระบบดิจิตอลโดยใช้ดิจิตอลซิกเนลคอลโทรลเลอร์

Implement Digital Signal Controller(DSPIC30F2010)

for brushless dc motor controller

การพัฒนานวัตกรรมภายโลกของการแข่งขันอย่างเสรีถือเป็นโจทย์สำคัญที่นักประดิษฐ์ต้องให้ ความสำคัญในการคิดค้นนวัตกรรมเพื่อผลิตเป็นสินค้าที่สามารถในการสร้างส่วนแบ่งในตลาคซึ่งมีการ แข่งขันกันด้านราคา ความทันสมัย และการตอบสนองความด้องการของผู้ใช้ ซึ่งเทคโนโลยีที่จะทำให้การ พัฒนาวัตกรรมให้ได้ตามเงื่อนไขดังกล่าวข้างต้นที่ดีที่สุดในยุกต์ปัจจุบัน คือ การนำเทคโนโลยีที่จะทำให้การ พัฒนาวัตกรรมให้ได้ตามเงื่อนไขดังกล่าวข้างต้นที่ดีที่สุดในยุกต์ปัจจุบัน คือ การนำเทคโนโลยี ใมโครคอนโทรลเลอร์ หรือ ไมโครคอมพิวเตอร์ มาเป็นตัวกำกับการทำงานให้เป็นไปตามความต้องการของ ผู้ผลิต ซึ่งมีการให้กำจำกัดความกับสิ่งประดิษฐ์เหล่านี้ ว่า เทคโนโลยี "ระบบสมองกลฝังตัว "(Embedded System) ปัจจุบันวัตกรรมและสินค้าทางเทคโนโลยีแทบทุกชนิด ด้วนแด้วแต่ใช้ระบบดังกล่าวทั้งสิ้น การสร้าง นวัตกรรมที่สามารถฝังแนวความคิดของมนุษย์ลงไปได้โดยนวัตกรรมดังกล่าวจะทำงานตามแนวความคิดที่ มนุษย์ได้ฝังลงไปซึ่งนับว่าเป็นความเจริญก้าวหน้าทางวิทยาศาสตร์เป็นอย่างมาก ที่สำคัญเทคโนโลยี สมอง กลฝังตัว มีความยืดหยุ่นทั้งการนำไปประยุกต์ใช้งาน และ การปรับปรุงแก้ไขระบบ ที่สำคัญเหนือสิ่งอื่นใดกี คือ ถู่แข่งขันลอกเลียนแบบนวัดกรรมได้ยากยิ่ง

ในบทนี้จะเป็นการนำเทคโนโลยีที่ได้กล่าวมาข้างต้นเป็นสมองกลในการควบคุมการทำงานของ มอเตอร์ดีซีแบบไร้แปรงถ่าน ซึ่งผู้เขียนจะขอเรียงลำดับการเรียนรู้และการใช้เครื่องมือเพื่อนำไปสู่การสร้าง ชุดควบคุมมอเตอร์ดีซีแบบไร้แปรงถ่านแบบสมองกลฝังตัว ออกเป็น ขั้นตอนดังนี้

- 1 การใช้โปรแกรม PICC COMPILER, MPLAB IDE, PROTEUS ในการพัฒนาระบบสมองกล โดยใช้ DSPIC 30F2010 เป็นตัวประเมินผลกลาง(Central Processing Unit CPU) และ พื้นฐานการพัฒนาโปรแกรม
- 2 การออกแบบวงจรและการพัฒนาชุดคำสั่งในการควบคุมการทำงานของมอเตอร์ดีซีแบบไร้แปรงถ่าน

1 การใช้โปรแกรม picc compiler, mplab ide, proteus

1.1 การใช้ PIC _ C COMPILER V 4.084

Se PCW	
Project Edit Search Options Compile View Tools Debug Document User Toolbar	
Project PIC Wizard 24 Bit Wizard Create Open All Files Close Project Find Text in Make File	
Project Options	
	*
Tiles	
Projects	
✓ Identifiers	
- 🛤 🍉 🖲 Insert CAP Pjt: ref818_1	

รูป 3.1 USER INTERFACE OF PIC C V4.08

PIC_C COMPILER V4.08 ได้เพิ่มความสามารถและสิ่งอำนวยความสะดวกให้กับผู้ใช้งาน อย่างมาก โดยสามารถใช้งานได้กับ pic microcontroller ได้ตั้งแต่ PIC12, PIC16 PIC18, PIC24 ไป จนถึง DSPIC และในส่วนของ user interface ก็หน้าตาดีมีการแบ่งออกเป็นหมวด หมู่ ทำให้ง่ายต่อการ ใช้งานเป็นอย่างมาก ในบทนนี้จะขอแนะนำผู้เริ่มต้นใช้ PIC_C COMPILER V4.08 พอสังเขบพอที่จะ ก้นคว้าได้ด้วยตัวเอง จากห้องสมุด(help)ที่ติดมากับโปรแกรมอย่างละเอียดดีมาก ๆ

จากรูปที่ 1.1 แสดงถึงการแบ่งกลุ่มเมนูเป็นกลุ่มดังนี้

- TAB project เป็นเมนูเริ่มต้นในการสร้างงาน หน้าที่หลักของเมนู project คือนำ source file (*.c)
 ซึ่งในแต่ละโปรเจ็กอาจจะประกอบด้วยหลาย source file แต่ต้องมี 1 source file ที่มีฟังชั่น main() อยู่ใน project เนื่องจากงานที่สร้างขึ้นทั่งหมดจะถูกบัญชาการด้วยฟังชั่นmain()นั่นเอง
- 2) TAB Edit ใช้ในการแก้ไขปรับปรุงการเขียนโปรแกรมเป็นหลัก
- 3) TAB Search ใช้อำนวยความสะดวกในการค้นหาและ แทนที่คำใน project
- 4) ใช้ในการกำหนดคุณลักษณะต่าง ๆ ของโปรเจ็ก เช่น Editor Tollbar และ Project เป็นต้น

- 5) Tab Compile ใช้ในการตรวจสอบไวยากรณ์และแปรงโปรเจ็กเป็น HEX File
- Tab view ใช้ในการเยี่ยมชมองค์ประกอบต่างต่าง ๆ ของโปรเจ็ก เช่น datasheet cpu, CPU Register การใช้ Preprocesser ต่าง ๆ เป็นต้น

ในส่วน Tab อื่น ๆ จะนำมากล่าวถึงในโอกาศต่อไป

โครงสร้าง pic_c compiler

ฐป3.2 structure pic c compiler

จากรูปที่ 1.2 พอจะอธิบายได้ว่าใน project ใด ๆ จะมีฟังชั่น main() เป็นฟังชั่นหลักในการบริหา ร จัดการระบบงานใน project ทั้งหมด นั่นคือว่า sub function ต่าง ๆ ที่อยู่ใน project จะถูกเรียกใช้งานโดย function main() และระหว่าง sub function ก็สามารถเรียกใช้ซึ่งกันและกันได้ ในส่วนของตัวแปรถ้า ประกาศไว้นอกฟังชั่นให้ถือว่าเป็นตัวแปรแบบ global (ยึดพื้นที่หน่วยความจำอย่างถาวร) ส่วนตัวแปรที่ ประกาศในฟังชั่นจะเป็นตัวแปรแบบ private (ใช้พื้นที่หน่วยความจำเมื่อมีการเรียกใช้ฟังชั่นเท่านั้น) การ พัฒนาโปรแกรมบน microcontroller การบริหารจัดการเรื่องของการใช้ memory (RAM)ถือเป็นสิ่งที่ต้องให้ ความสำคัญมาก ๆ เนื่องจาก memory ใน microcontroller มีอยู่อย่างจำกัด

Pre-Processor

Pre-processor ใช้สำหรับเตรียมความพร้อมให้กับ compiler ให้ทำความรู้จักกับองค์ประกอบ ต่าง ๆ ของโปรเจ็กอาธิเช่น cpu (#include<30F2010.h>) การกำหนดฟังชั่นการทำงานให้กับ cpu(#Fuse NOWDT, NOPUT, PROTECT)และ กำหนด clock speed ให้กับ cpu(#use delay(clock=2000000)) เป็นต้น

Data Definition

การพัฒนาโปรแกรมในเรื่องใด ๆ ก็ตามการประกาศตัวแปรปืนสิ่งที่หลีกเลี่ยงได้ยาก เนื่องจาก งานด้านพัฒนาโปรแกรมเป็นการนำอินพุทข้อมูลที่มีการเปลี่ยนแปรงตามสภาวะต่างมาประเมินผลเพื่อให้ได้ ก่าเอาท์พุทตามที่เราต้องการนั่นเอง

int1	1 bit number	0 to 1	N/A
int8	8 bit number	0 to 255	-128 to 127
int16	16 bit number	0 to 65535	-32768 to 32767
int32	32 bit number	0 to 4294967295	-2147483648 to 2147483647
float32	32 bit float	-1.5 x 10 ⁴⁵ to 3.4 x 10 ³⁸	

Constance Data

A =123;	ฐานสิบ
B = O123;	ฐานแปด
C = 0X0F;	ฐานสิหก

D = 0B00110011;

ฐานสอง

Function Definition

ระเบียบว่าด้วยการสร้าง sub function มีดังนี้

- ประกาศฟังชั่น prototype ให้ compiler ทราบทุกครั้งก่อนการเรียกใช้ฟังชั่น
- กำหนดรูปแบบการรับและส่งค่าของฟังชั่นให้ถูกต้อง

ตัวอย่างโปรแกรมที่ประกอบด้วยฟังชั่นย่อยแบบต่าง ๆ

#include <30F2010.h>
#device adc=8
#Fuses HS
#Fuses BROWNOUT
#Fuses NOMCLR

#Fuses PUT4

#Fuses NOWDT

#use delay(clock=10000000,restart_wdt)

```
#use rs232(UART1,baud=19200,parity=N,bits=8,)
```

void f1(void); void f2(int8 data); int16 f3(int8 a,int8 b);

```
Function
prototype
```

```
void main()
```

```
{
```

```
int16 x;
```



```
}
void f2(int8 data)
{
  output_b(data);
}
int16 f3(int8 a,int8 b)
{
  return a+b;
}
```

Operators Table

+	Addition Operator
+=	Addition assignment operator, x+=y, is the same as x=x+y
&=	Bitwise and assignment operator, x&=y, is the same as x=x&y
&	Address operator
&	Bitwise and operator
^=	Bitwise exclusive or assignment operator, x^=y, is the same as x=x^y
٨	Bitwise exclusive or operator
=	Bitwise inclusive or assignment operator, xI=y, is the same as x=xly
I	Bitwise inclusive or operator
?:	Conditional Expression operator
	Decrement
/=	Division assignment operator, x/=y, is the same as x=x/y
1	Division operator
==	Equality
>	Greater than operator
>=	Greater than or equal to operator
++	Increment
*	Indirection operator
!=	Inequality
<<=	Left shift assignment operator, x<<=y, is the same as x=x< <y< td=""></y<>
<	Less than operator
<<	Left Shift operator

<=	Less than or equal to operator
&&	Logical AND operator
!	Logical negation operator
II	Logical OR operator
%=	Modules assignment operator x%=y, is the same as x=x%y
%	Modules operator
=	Multiplication assignment operator, x=y, is the same as x=x*y
*	Multiplication operator
~	One's complement operator
>>=	Right shift assignment, x>>=y, is the same as x=x>>y
>>	Right shift operator
->	Structure Pointer operation
-=	Subtraction assignment operator
-	Subtraction operator
sizeof	Determines size in bytes of operand

Statements Table

<u>if</u> (expr) stmt;	if (x==25)
[else stmt;]	x=1;
	else
	x=x+1;
<u>while</u> (expr) stmt;	
	while (get_rtcc()!=0)
	putc('n');
<u>do</u> stmt while (expr);	do {
	putc(c=getc());
	} while (c!=0);
<pre>for (expr1;expr2;expr3) stmt;</pre>	for (i=1;i<=10;++i)
	printf("%u\r\n",i);
switch (expr) {	switch (cmd) {
case cexpr: stmt; //one or more	case 0: printf("cmd 0");
case [default:stmt]	break;

}	case 1: printf("cmd 1");
	break;
	default: printf("bad cmd");
	break; }
<u>return</u> [expr];	return (5);
<u>goto</u> label;	goto loop;
<u>label</u> : stmt;	loop: I++;
<u>break;</u>	break;
<u>continue;</u>	continue;
<u>expr;</u>	i=1;
2	;
{[<u>stmt]</u> }	
Zero or more	

BUILT-IN-FUNCTIONS

Built in function นับได้ว่าเป็นสิ่งที่ช่วยอำนวยกวามสะดวกกับผู้ใช้โปรแกรม pic c compiler เป็น อย่างมากโดยที่ผู้ใช้แค่ทำความเข้าใจกับการส่งผ่านค่าตัวแปรและ การ return ค่าของฟังชั่น เท่านั้น

ตัวอย่างที่ 1

Syntax:	bit_set(<i>var</i> , <i>bit</i>)
Parameters:	<i>var</i> may be a 8,16 or 32 bit variable (any lvalue) <i>bit</i> is a number 0-31 representing a bit number, 0 is the least significant bit.
Returns:	Undefined
Function:	Sets the specified bit (0-7, 0-15 or 0-31) in the given variable. The least significant bit is 0. This function is the similar to: var = (1< <bit);< td=""></bit);<>

Availability:	All devices
Requires:	Nothing
Examples:	int x;
	x=5;
	bit_set(x,3);
	// x is now 13
ตัวอย่างที่ 2	
Syntax:	value = read_adc ([<i>mode</i>])
Parameters:	mode is an optional parameter. If used the values may be:
	ADC_START_AND_READ (continually takes readings, this is the default)

ADC_START_ONLY (starts the conversion and returns)

ADC_READ_ONLY (reads last conversion result)

Returns: Either a 8 or 16 bit int depending on #DEVICE ADC= directive.

Function: This function will read the digital value from the analog to digital converter. Calls to setup_adc(), setup_adc_ports() and set_adc_channel() should be made sometime before this function is called. The range of the return value depends on number of bits in the chips A/D converter and the setting in the #DEVICE

	ADC= direct	ive as foll	ows:			
	#DEVICE	8 bit	10 bit	11 bit	12 bit	16 bit
	ADC=8	00-FF	00-FF	00-FF	00-FF	00-FF
	ADC=10	х	0-3FF	x	0-3FF	x
	ADC=11	x	x	0-7FF	x	x
	ADC=16	0-FF00	0-FFC0	0-FFEO	0-FFF0	0-FFFF
	Note: x is r	not define	d			
Availability:	This function	n is only a	vailable on	devices with	A/D hardwa	are.
Requires:	Pin constant	s are defi	ned in the d	levices .h file	9.	
Examples:	<pre>setup_adc(setup_adc_p set_adc_cha while (input delay_ms(value = re printf("A/D } read_adc(A sleep(); value=read_</pre>	ADC_CLO ports(ALL innel(1); (PIN_B0) (5000); ad_adc(); value = 0 DC_STAF adc(ADC_	DCK_INTER _ANALOG	RNAL);); lue); LY);		
การสร้าง Proje	ect กับ pic_c c	ompiler	มีทางเลือกไ	ด้ 2 ทางดังนี้	คือ	
1) ใช้ Pro	oject Wizard					

2) ใช้ Manual create Project

Project Wizard นับได้ว่ามีประโยชน์ต่อผู้เริ่มต้นใช้โปรแกรม เป็นอย่างมาก เนื่องจาก pic microcontroller มี register ค่อนข้างมากทำให้ยากต่อการ config ในการนำไปใช้งานในแต่ละอย่าง และ project wizard จะช่วยนำทางมือใหม่สู่เป้าหมายได้

ขั้นตอนการใช้ Project Wizrad

Step 1

Se PCW				
Project Edit Search	h Options Compile View	Tools Debug Document Us	ser Toolbar	
Project PIC Wizard 24 Bill	Wizart Create Open All Files Project Option	Close Project Find Text in Make S	s File ject	
	Save As			? 🛛
es Projects Stdentfiers	Save in: Projects Projects Examples My Recent Documents My Network Places My Computer Projects P	s test_bldc rolles Default.pjt 11 PROJECT01 .PJT Project file only	 3 > > > Sa Ca 	ave

รูปที่ 3.3 เริ่ม project wizard

- เถือก Tab Project → Pic Wizard สำหรับ(8 bit databus) or 24 bit Wizard(16 bit data bus) → project name → save

Step 2

รูปที่ **3.4** register config

Pic c compiler จะแบ่งกลุ่มส่วนที่ผู้ใช้ต้องกำหนดค่าเริ่มต้นให้กับ compilerไว้ในlist box ทางด้าน ซ้ายมือ เช่น ส่ วนของ general,Interrupt,Driver,I/O Pin เป็นต้น ซึ่งการกำหนดค่าในแต่ละส่วนนั้น จำเป็นต้องทำความเข้าใจโครงสร้างและฟังชั่นการทำงานอย่างละเอียด หลังจากที่เราเข้าไปกำหนดส่วนต่าง ๆ เรียบร้อยแล้ว click ok โปรแกรมจะสร้าง source code ส่วนหนึ่งมาใส่ไว้ในฟังชั่นหลักเ พื่อกำหนดการ ทำงานเริ่มต้นให้กับ CPU เพื่อพร้อมที่จะใช้งานตามความต้องการต่อไป

ตัวอย่าง code ใด้จากการ wizard

// #include "C:\Progra	am Files\PICC\PROJECT01.h"
#include <30F2010.h>	>
#FUSES NOWDT	//No Watch Dog Timer
#FUSES HS	//High speed Osc (> 4mhz for PCM/PCH) (>10mhz for PCD)
#FUSES PR	//Primary Oscillator
#FUSES NOCKSFSM	//Clock Switching is disabled, fail Safe clock monitor is disabled
#FUSES WPSB16	//Watch Dog Timer PreScalar B 1:16
#FUSES WPSA512	//Watch Dog Timer PreScalar A 1:512
#FUSES PUT64	//Power On Reset Timer value 64ms
#FUSES NOBROWNOUT	//No brownout reset
#FUSES BORV47	//Brownout reset at 4.7V
#FUSES LPOL_HIGH	//Low-Side Transistors Polarity is Active-High (PWM 0,2,4 and 6)
//PWM module low side ou	tput pins have active high output polar
#FUSES HPOL_HIGH	//High-Side Transistors Polarity is Active-High (PWM 1,3,5 and 7)
//PWM module high side o	utput pins have active high output polarity
#FUSES NOPWMPIN	//PWM outputs drive active state upon Reset
#FUSES MCLR	//Master Clear pin enabled
#FUSES NOPROTECT	//Code not protected from reading
#FUSES NOCOE	//Device will reset into operational mode
#FUSES ICS0	//ICD communication channel 0
#FUSES RESERVED	//Used to set the reserved FUSE bits
#use delay(clock=1000000)	
#use rs232(UART1,baud=96	00,parity=N,bits=8)
void main()	
{	Main() function
setup_spi(SPI_SS_DISABL	LED);
setup_wdt(WDT_ON);	
setup_timer1(TMR_DISAB	LED TMR_DIV_BY_1)
// TODO: USER CODE!!	
})

Manual Create Project

เป็นวิธีการนำ source file ที่ถูกสร้างขึ้นมาแล้ว มาประกอบรวมเป็น project อย่างไรก็ตามจะต้องมี function main() อยู่ในsource file ด้วยเนื่องจากกฎเกณฑ์ของภาษาซีที่ project ใด ๆ ก็ตามจะต้องใช้ function main()ในการบริหารจัดการกับ project ทั้งหมด ขั้นตอนการ manual create project แสดงด้วย รูปภาพเป็นลำดับดังนี้

ร**ูปที่ 3.**5 step 1 เส้นทางสู่ การเลือก source file

รูป 3.6 เลือกDevice

รูป 3.7 การ manual create project เสร็จสมบูรณ์

<u>3.2 การใช้ PIC C V4.08 ร่วมกับ MPLAB IDEในการพัฒนาและตรวจสอบโปรแกรม</u>

PIC C COMPILER สามารถทำงานร่วมกับ MPLAB IDE เพื่ออำนวยความสะดวกในการพัฒนา และตรวจสอบความถูกด้องของชุดคำสั่ง หรือ กระบวนการทำงานในโปรแกรม ว่าเป็นไปตามแผนงานที่ ออกแบบไว้หรือไม่ ซึ่งขั้นตอนการ setup ให้ PIC C COMPILER สามารถทำงานร่วมกับ MPLAB IDE มีขั้นตอนดังนี้

3.2.1 setup_mplab_plugin

ฐป 3.8 setup MPLAB plugin

	0
Setup will install CCS C Compiler Plug	g-In for MPLAB in the following folder.
To install into a different folder, click	Browse, and select another folder.
You can choose not to install CCS C Setup.	Compiler Plug-In for MPLAB by clicking Cancel to exit
Destination Folder C:\Program Files\PICC	Browse
Destination Folder C:\Program Files\PICC	Browse

รูป 3.9 Location install

3.2.2 การสร้าง PROJECT ใน MPLAB IDE

รูป 3.10

รูป 3.11 เข้าถึงเมนู PROJECT WIZARD

รูป **3.12**

รูป **3.13** เลือกตัวประเมินผล(CPU)

Step Two: Select a languag	ge toolsuite
Active Toolsuite:	CCS C Compiler for PIC10/12/14/16/18/24/dsPIC30/dsPIC33
Toolsuite Contents	B Knudsen Data CC5X B Knudsen Data CC8E Byte Craft Assembler & C Compiler CCS C Compiler for PIC10/12/14/15/18/24/dsPIC30/dsPIC33
Location	IAR PIC18 IAR Systems Midrange Microchip C18 Toolsuite Microchip MPASM Toolsuite
C:\Program files\Pi	icc\CCSC.exe Browse
Help! My Suit	te Isn't Listed!

ູລູ້ **J** 3.14 Select language toolsuite

MPLAB IDE v8.83 - Untitled Workspace	
File Edit View Project Debugger Programmer Tools Configure Window Help	
D ☞ 문 │ & ヽ ヽ ゚ ゟ ゟ # # # ヸ, ? │ ── ♂ ☆ ₽ ≒ ヽ O	Checksum: 0×4406
Untitled Workspace	
Step Three: Create a new project, or reconfigure the active project?	Save Project As
Create New Project File Browse Reconfigure Active Project Make changes without saving Save changes to existing project file Save changes to another project file Browse Browse Keack Next > Cancel Help	Save in: PICC Data Sheets Examples Data Sheets Examples Debugger Profiles Projects Devices test877 Devices test2010 DL Templates Drivers test16f818 PROJECT01 Save File name: PROJECT01 Save as tope: PROJECT01.c PROJECT01.h Cancel PROJECT01.pjt

รูป 3.15 เลือก floderในการจัดเกี่บ และ ตั้งชื่อ project

MPLAB IDE v8.8	33 - Untitled Workspace
File Edit View Proj	ject Debugger Programmer Tools Configure Window Help
] 🗅 🚅 🖬 🕺	▶♀ ◎ ▲ @ # ₽ ♀ ♀
Untitled Works	space
	Project Wizard
	Step Four: Add existing files to your project
Files 📌 Sym	Pconvert.exe pcvw.chm Pcv.exe PROJECTOT PROJECTOT PROJECTOT PROJECTOT PROJECTOT PROJECTOT PROJECTOT Add >> Remove PROJECTOT PROJECTOT Concel Help

รูป 3.16 add file to project

รูป 3.17 ดูความถูกต้องในองค์ประกอบของ project และ click Finish จบขั้นตอนการสร้าง project

รูป 3.18 Project ที่สมบูรณ์มีsource file PROJECT01.C ที่สร้างขึ้นจากโปรแกรม PIC C COMPILER

<u>ตัวอย่าง</u> การใช้ MPLAB IDE ตรวจสอบค่าตัวแปรและค่าใน REGISTER	

รูป 3.19 ตัวแปร A B C และ REGISTER PORT B ที่ต้องการตรวจสอบ

จากรูป(3.19) เราค้องการตรวจสอบค่าในตัวแปร Aหลังจากโปรแกรมปฏิบัติตามคำสั่งในบรรทัคที่ 23 ตรวจสอบค่าในตัวแปร B หลังจากโปรแกรมปฏิบัติตามคำสั่งในบรรทัคที่ 24 ตรวจสอบค่าในตัวแปร C หลังจากโปรแกรมปฏิบัติตามคำสั่งในบรรทัคที่ 25 และ ตรวจสอบค่าใน REGISTER PORTB หลังจาก โปรแกรมปฏิบัติตามคำสั่งในบรรทัคที่ 27 ซึ่งขั้นตอนในการตรวจสอบแสคงเป็นลำคับตามรูป

รูป **3.20** เลือก debug tool

รูป **3.21 ใช้** toolbar menu make project

จากรูปให้สังเกตุความถูกต้องของไวยากรณ์และชุดคำสั่งหลังจากการใช้ toolbar Make Project และสังเกตว่าจะมี toolbar ควบคุม step ในการตรวจสอบ และมีลูกศรบอกบรรทัดของการตรวจสอบแสดง ไว้ในวงกลม

รูป **3.23** Add SFR และ Add Symbol

้จากรูปเป็นการนำ Register และ ตัวแปรที่ต้องการตรวจสอบมาไว้ที่หน้าต่าง Watch

ROJECTO1 - MPLAB IDE v8.83 - Watch								
File Edit View Project Debugger Programmer Tools Configure Window Help								
D 🛎 🖬 % 🖻 🛍 🖨 🖊 🛩 J	🔍 💡 📝 🚰 🖳 🦉 🖷 🚯 🖷 🚯 🖷 🚯 🦉 🎬 🛗 🛛 Checksum: 0xa292 🔹 🕨 🚺 🚺 🚺 🚺							
PROJECT01.mcw	C:\Program Files\PICC\PROJECT01.c							
	6 #FUSES PR //Primary Oscillator 7 #FUSES NOCKSFSM //Clock Switching is desoled, fail 8 #FUSES WPSB16 //Watch Dog Time PreScalar B 1:16 9 #FUSES WPSB12 //Watch Dog Time PreScalar B 1:16 10 #FUSES WPSB12 //Watch Dog Time PreScalar A 1:512 11 #FUSES NOBROWNOUT //Watch Dog Time reset 12 #FUSES BORV47 //No brownout reset 13 #use delay (clock=1000000) #tese reset 14 #UTUTT works600 entrium N bitscol 10							
PROJECT01.STA	Watch							
PROJECT01.SYM	Add SFR PORTB V Add Symbol C	•						
	19 Update Address Symbol Name Value							
	20 froid main() 2C8 FORTB 0x0020 21 { 800 A 0x0326 22 802 B 0x03B8 23 A=1000; 804 C 0x0FA0 24 B=3000; 2 C=A+B; C 0x0FA0							
Files 🥰 Symbols	26 27 28 29 30 31 Watch 2 Watch 3 Watch 4 30							

รูป 3.25 ตรวจสอบค่าใน Register และค่าตัวแปรหลังจากโปรแกรมปฏิบัติตามคำสั่งในแต่ละบรรทัด

<u>ตัวอย่าง</u>การตรวจสอบโดยใช้ Logic Analyzer

ในบางครั้งการวิเคราะความถูกต้องของระบบจำเป็นต้องคูสถานะทางลอจิกเทียบกับแกนเวลาหลาย ๆ สัญญานพร้อม ๆ กันไม่ว่าจะเป็น อินพุทหรือเอาท์พุท หรือ ความสัมพันธ์ระหว่างอิพุทกับเอาท์พุท logic Analyzer ถือว่าเป็นเครื่องมือที่ใช้ตรวจสอบงานในลักษณะดังกล่าวได้ดีมาก ซึ่งขั้นตอนการใช้ แสดงลับดับ ขั้นตอนได้ดังรูป

รูป 3.26 sitting เพื่อรองรับการใช้ LOGIC ANALYZER

รูป 3.27 ขั้นตอนการ setup Logic Analyzer

รูป 3.28 เลือกการตรวจสอบแบบ Animation

3.2 การใช้ PIC C V4.08 ร่วมกับ PROGRAM PROTEUS V 7.4 SP3 ในการพัฒนาและ ตรวจสอบกระบวนการทำงาน

Program Proteus นับได้ว่าเป็นโปรแกรมที่ตอบสนองความต้องการของนักออกแบบ ระบบควบคุมแบบสมองกลฝังตัวได้เป็นอย่างดี ด้วยความมารถในการจำลองการทำงานของระบบควบคุมที่มี ส่วนของหน่วยประเมินผลกลาง(Central Processing Unit) ที่ต้องอาศัยการพัฒนาชุดคำสั่งหรือโปรแกรม ในการบริหารจัดการให้กับระบบ

รูป 3.29 วงจรพื้นฐานในการจำลองการทำงานของ DSPIC

เนื่องจาก PROGRAM PROTEUS V 7.4 SP3 ไม่มี SIMULATOR MODEL ของ DSPIC 30F2010 แต่อย่างไรก็ตามเราสามารถใช้ DSPIC 33FJ32MC204 แทนได้ เนื่องจากCPU ทั้งคโมดูล POWER CONTROL PWM เหมือน ๆ กัน ซึ่งในลำดับถัดจากนี้ไปเราจะมุ่งประเด็นการเรียนรู้ไปที่การใช้งานโมดูล POWER CONTROL PWM ในการสร้างชุดควบคุมมอเตอร์ดีซีแบบไร้แปรงถ่านต่อไป

> 3.2.1 ใช้โปรแกรม Proteus ในการเรียนรู้และการเข้าถึงสถาปัตยกรรมของ ใมโครคอนโทรลเลอร์

รูป 3.30 รูปลักษณ์ถายนอกและองค์ประกอบภายใน DSPIC30F2010

รูปร่างหน้าตาภายนอกและองค์ประกอบภายในของ DSPIC30F2010

จะเห็นได้ว่าองก์ประกอบภายในของ DSPIC30F2010 ได้ออกแบบมาเพื่อรองรับกับระบบควบคุม โดยเฉพาะซึ่งองก์ประกอบดังกล่าวพอจะแบ่งออกเป็นกลุ่ม ๆ คือ

- กลุ่มที่ใช้ในการจัดเก็บลำดับคำสั่ง,หน่วยประเมินผลผลและการบริหารจัดการข้อมูลเช่น MCU/DSP
 CORE,Program Memory,Data Memory และ Data Memory EEPROM เป็นต้น
- กลุ่มที่ใช้จัดการกับเรื่องของจำนวนนับและเวลา เช่น Timer1,Timer2,Timer3,Output Capture และ
 Input Capture เป็นต้น
- กลุ่มที่ใช้สำหรับเปลี่ยน สัญญานอนาล็อกเป็นดิจิตอล คือ ADC
- กลุ่มที่ใช้ในการติดต่อสื่อสารกับอุปกรณ์ภายนอกเช่น UART1,UART2,SPI1,SPI2,I2C,CAN1 และ CAN2 เป็นต้น
- กลุ่มที่ใช้ในการออกควบคุมการทำงานของมอเตอร์ เช่น Motor Control PWM และ Quadrature Encoder

PIC C compiler และ PROTEUS นับได้ว่าเป็นเครืองมือที่ทำให้นักออกแบบและพัฒนาระบบ ควบคุม ทำงานได้ง่ายขึ้นมากเนื่องจากมีความสะดวกพัฒนาโปรแกรมและตรวจสอบความถูกต้องของ โปรแกรมได้สะควกมาก ก่อนที่เราจะทำความเข้ากับการใช้โมดูล Motor Control PWM ให้เรามาทำความ เข้าใจกับองค์ประกอบรอบข้างซึ่งจะเป็นส่วนที่ช่วยสนับสนุนให้ระบบของเราสมบูรณ์มากยิ่งขึ้น

<u>ตัวอย่าง</u>การใช้ built in function เพื่อการเข้าถึงข้อมูลใน register I/O PORT

รูป 3.31 โครงสร้างภายในของ I/O PORT

จากรูป (3.31) จะเห็นว่าการที่จะเข้าถึงข้อมูลในแต่ละ I/O PORT นั้น มี่ส่วนที่เข้ามาเกี่ยวข้องถึง 4 กลุ่มด้วยกันคือ

- Peripheral Module
- Output Multiplexers
- PIO Module
- I/O Cell

เพราะจะนั้นการที่จะทำความเข้าใจในการใช้คำสั่งในการติดต่อกับ i/o port คือการตรวจสอบค่าในแต่ละกลุ่มว่า อยู่ใน register ตัวไหนบ้างและแต่ละตัวมีความสัมพันธ์ในกลุ่มกันอย่างไร

```
<u>ตัวอย่างโปรแกรม</u> การใช้คำสั่งในการติดต่อกับ i/o port
#include <30f2010.h>
#Fuses hs,noWDT
#Fuses BORV27
#fuses PUT64
#fuses BROWNOUT
#FUSES MCLR
#use delay(clock=10000000)
int16 data_portc;
void main(void)
```

```
{
```


จากโปรแกรมดังกล่าวสามารถเรียนรู้กระบวนการจัดการในกลุ่ม Register ที่ทำหน้าที่รับหรือส่งข้อมูล ออกภายนอกโดยใช้ MPLAB IDE ดูการเปลี่ยนแปลงในกลุ่ม Register ดังกล่าว และใช้โปรแกรม Proteus จำลองวงจรเสมือนจริง

<u>ตัวอย่าง</u> โปรแกรม การเข้าถึงข้อมูลใน Register โดยใช้ Preprocessor #Locate

ในบางครั้งบางกรณีการใช้ชุดคำสั่งสำเร็จรูปทำให้เราขาดความยืดหยุ่นในการทำงาน หรือ ไม่สามารถผ่านความ ละเอียดในข้อกำหนดของงานนั้นได้ จำเป็นต้องมีการประยุคใช้ preprocessor ประกอบกับรูปแบบการเข้าถึงข้อมูลตาม ข้อกำหนดของ compiler มีไว้ให้ ต่อไปนี้จะเป็นวิธีการหาตำแหน่ง address register และ การใช้ #locate เพื่อระบุ ตำแหน่ง address ของ register

ชึ่งการค้นหาตำตำของ แต่ละ Register ใน PIC C Compiler ทำได้โดยใช้เมนู View ->Special Rrgister ดังรูป

	Project Edit Search Options Compile_ View Tools	Solution Device Table Editor	,											\mathbf{X}
<u> </u>		🛷 MCU Parts 🛛 🏄 ICD I	nterfaces	🕘 Memory	/ Parts 🧧	Selection	Tool 🔳 F	legisters	<mark>ළ</mark> Errata					
-0	🖕 🧕 🖉 🖉 📑	PIC24FJ256GB108	DSP	C30F2	2010	📙 Make	Include file	📇 Prir	nt 🖘	Search	🕅 Copy	📆 Da	ta Sheet	2
nterrupt	ts Valid Euses Data Sheet Part Errata Registers □ I G	PIC24HJ256GP206	$\mathbf{Addr} \triangle$	Word	Group	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	^
	View	PIC24HJ256GP210 PIC24HJ256GP610	294	ADCBUFA	ADC							ADCBUFA	ADCBUFA	1
PRO	DJECT01.c	DSPIC30F1010	296	ADCBUFB	ADC							ADCBUFB	ADCBUFB	1
	1 // titaluda "C:\ Brogram Files\ DICC\	DSPIC30F2010	298	ADCBUFC	ADC							ADCBUFC	ADCBUFC	1
	2	DSPIC30F2011	29A	ADCBUFD	ADC							ADCBUFD	ADCBUFD	٦.
;	3 #irclude <33FJ32MC204.h>	DSPIC30F2012	29C	ADCBUFE	ADC							ADCBUFE	ADCBUFE	1
1	4 FUSES NOWDT //No W.	DSPIC30F2023	29E	ADCBUFF	ADC							ADCBUFF	ADCBUFF	1
	5 #FUSES HS /High	DSPIC30F3010	2A0	ADCON1	ADC	ADON		ADSIDL				FORM1	FORM0	
	7 #FUSES NOCKSFSM //Clock	DSPIC30F3011	2A2	ADCON2	ADC	VCEG2	VCEG1	VCEG0	OFECAL		CSCNA	CHPS1	CHPS0	
1	8 //#FUSES WPSB16 //Wa	DSPIC30F3012	204	ADCON3	ADC				SAMC4	SAMC3	SAMC2	SAMC1	SAMCO	
1	9 //#FUSES//	DSPIC30F3014	201	ADOUR	ADC	CLIVNET	CHYNRO	CHYCR	CHONE	CHOCES	CHOCED	CUICERI	CHOCEDO	÷
1(0 //#FUSES PUT64 //Pot	DSPIC30F4011	240	ADCHS	ADC	CHANDI	CHANDU	СПАЗБ	CHUND	CHUSDS	CHUSDZ	CHUSDI	CHUSDU	-
1:	2 //#FUSES NOBROWNOUT /NO	DSPIC30F4012	2A8	ADPCFG	ADC									-
1:	3 #use delay(clock=10000000)	DSPIC30F4013	2AA	ADCSSL	ADC									. 1
1	4 #use rs232(UART1, baud=9600, parity=N, bi	DSPIC:0E5011	2C6	TRISB	PORTS									
1	5	DSPIC30F5015	2C8	PORTB	PORTS									
1	6 INT16 A, B, C;	DSPIC30F5016	2CA	LATB	PORTS									
1	/(DSPIC30F6010	2CC	TRISC	PORTS									
1	9	DSPIC30F6010A	2CE	PORTC	PORTS									
2(0 🖵 void main()	DSPIC30F6011	200	LATC	PORTS									
23	1 {	DSPIC30E6012	202	TRICD	DODIE									
2:	2	DSPIC30F6012A	202	DODTD	DODTO									
2:	A=1000;	DSPIC30F6013	204	PORID	PORTS									
21	5 C=2+B:	DSPIC30F6013A	2D6	LATD	PORTS									
2	6	DSPIC30F6014	2D8	TRISE	PORTS									
2'	7 OUTPUT B(C);	DSPIC30F6014A	2DA	PORTE	PORTS									

รูป **3.34** การหาร Address Special Function Register(SFR)

การใช้งานโมดูล ANALOG TO DIGITAL CONVERTER

ANALOG TO DIGITAL CONVERTER MODULE เป็นอีกหนึ่งโมดูลที่ติดมากับ ไมโครคอนโทรลเลอร์เกือบทุกเบอร์อาจจะเนื่องมาจากระบบควบคุมโดยส่วนใหญ่แล้วต้องมีส่วนที่ต้อง ประเมินผลสัญญาอินพุทที่เข้ามาในรูปแบบของสัญญาณอนาล็อก เช่น การเปลี่ยนแปลงของอุณหภูมิ การ เปลี่ยนแปลงของ แรงดัน และ กระแสไฟฟ้าเป็นต้น รูปข้างล่างแสดงให้เห็น BLOCK DIAGRAM ของโมดูล ANALOG TO DIGITAL CONVERTER

รูป 3.35 BLOCK DIAGRAM ANALOG TO DIGITAL CONVERTER

จะเห็นว่า DIGITAL SIGNAL CONTROL สามารถรับสัญญาณอนาล็อกได้หลายช่อง PIC C COMPILER มีคำสั่งสำเร็จรูปในการเลือกรับสัญาณอนาล็อกในแต่ละช่อง ซึ่งทำให้การพัฒนาโปรแกรมที่ เกี่ยวข้องกับการประเมินผลสัญญาณอนาล็อกทำได้ง่ายขึ้นมาก

<u>ตัวอย่าง</u> โปรแกรมการใช้งาน ANALOG TO DIGITAL MODULE

#include <30f2010.h>
#device adc=10
#Fuses hs,noWDT
#Fuses BORV27
#fuses PUT64
#fuses BROWNOUT
#FUSES MCLR
#use delay(clock=1000000)
#use rs232(UART1,baud=9600,parity=N,bits=8,XMIT=PIN_C7)

รูป 3.36 วงจรจำลองการทำงานการรับค่าสัญญาณอนาล็อก

<u>การใช้โมดูล Timer1</u>

Module timer ถือเป็นโมดูลที่ติดมากับ microcontroller เกือบทุกเบอร์หรือ ทุก ๆ ตระกูลก็ว่าได้เนื่องจากว่ามัน เป็นโมดูลที่มีความจำเป็นกับการทำงานในหลาย ๆ ด้าน ที่ต้องเกี่ยวข้องกับเวลา และ การนับเพราะโดย ธรรมชาติ ของงาน แล้วมักจะเกี่ยวข้องกับแกนเวลา และจำนวนนับเสมอ เพราะจะนั้นการทำความเข้าใจกับการใช้งาน โมดูลนี้ถือได้ว่าเป็น สิ่งจำเป็นอย่างยิ่ง

รูป 3.37 Block diagram logic control Timer1

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
X	TGATE	TCKPS1	TCKPS0	X	TSYNC	TCS	X

รูป 3.38 ตำแหน่งประจำบิตของ register T1CON

จากรูป จะได้ถึงองค์ประกอบการกำหนดการทำงานให้กับ timer 1 พอสังเขบดังนี้

- 1 bit เลือก input clock TCS(T1CON.1) TGATE(T1CON.6)
- 2 bit หารความถี่ (prescale input clock) TCKPS1(T1CON.5) TCKPS0(T1CON.4)
- 3 bit synchronous mode input clock TSYNC (T1CON.2)
- 4 bit T1IF เป็น flag จะ set ในกรณี timer1 over flow หรือ ค่าใน timer1 = ค่าใน PR1
- 5 register TMR1 เป็น counter 16 bit
- 6 register PR1 เป็น buffer 16 bit ใช้ในกรณีด้องการเปรียบเทียบค่าใน Timer 1

ตัวอย่างโปรแกรมการใช้งาน TIMER1

จะเห็นได้ว่า PIC C COMPILER ช่วยให้เราใช้งานโมดูล Timer1 ได้ง่ายมากเพียงใช้คำสั่งสำเร็จรูป SETUP_TIMER1(TMR_EXTERNAL |TMR_DIV_BY_1) เพียงคำสั่งเดียวกีสามารถกำหนดให้ Timer1 รับ สัญญาณ CLOCK จากภายนอกได้แล้ว อย่างไรก็ตามถ้าจะศึกษารายละเอียดตาม Block diagram logic control Timer1 จะต้องใช้ MPLAB IDE เพื่อตรวจสอบค่าใน REGISTER ในการทำความเข้าใจกำการ SETUP ให้ TIMER1 ทำงานตามที่เราต้องการ

<u>การใช้งานโมดูล TIMER2/3ทำงานในโหมด 32 BIT</u>

ใน microcontroller ที่พัฒนาขึ้นมาเป็น digital signal controller จะมี timer/counter ขนาด 32 bit ซึ่ง จะไม่มีใน pic12 pic16 และ pic18 ในส่วนของการกำหนดการทำงานนั้นก็ไม่แตกต่างไปจากเดิม คือสามารถ กำหนดให้ทำงานใน mode counter(external clock), mode timer(internal clock) และ mode comparator เหมือนเดิม

รูป 3.40 logic diagram timer 2/3 module

รูป 3.41 ตำแหน่ง bit ใน Register T2CON

ี้ เราสามารถกำหนดการทำงานให้กับ TIMER23 ทำงานในโหมด 16 BIT หรือ 32 BIT ก็ได้โดยใช้ฟังชั่น สำเร็จรูปดังนี้

ฟังชั้นในการกำหนดให้ TIMER23 ทำงานในโหมด 16 BIT SETUP_TIMER2(TMR_EXTERNAL ∣TMR_DIV_BY_1);

ฟังชั้นในการกำหนดให้ TIMER23 ทำงานในโหมด 32 BIT SETUP_TIMER2(TMR_EXTERNAL |TMR_DIV_BY_8|TMR_32_BIT);

ตัวอย่างโปรแกรม การใช้ TIMER23 ขนาด 32 BIT

```
#include <30f2010.h>
#Fuses hs.noWDT
#Fuses BORV27
#fuses PUT64
#fuses BROWNOUT
#FUSES MCLR
#use delay(clock=10000000)
void main(void)
{
 SETUP TIMER2(TMR EXTERNAL |TMR DIV BY 8|TMR 32 BIT);
  set_timer23(75530);
 while(true)
 ł
  value_timer23=get_timer23();
  printf("value_timer = %lu\r\n",value_timer23);
  DELAY_MS(100);
  }
}
```

โปรแกรมบริการ INTERRUPT

การใช้บริการ interrupt ถือได้เป็นส่วนช่วยให้การบริหารจัดการในการทำงานคล่องตัวและมีประสิทธิ มากขึ้น จะนั้นจะเห็นว่า ใน microcontroller ไม่ว่าจะเป็นตระกูลใด ๆ ก็จะมีการพัฒนาให้สามารถรองรับแหล่งกำเหนิด interrupt มากขึ้นเรื่อย

ในการพัฒนาโปรแกรมไม่ว่าเราะเลือกใช้ compiler ภาษาใด ๆ ก็ตาม จำเป็นต้องทำความเข้าใจในส่วนของ ข้อกำหนดการสร้างโปรแกรมบริการ interrupt เสมอ digital signal controller ได้สร้างส่วนของแหล่งกำเหนิดการ interrupt ไว้อย่างมากอทิเช่น

Interrupt จากภายนอก External Interrupt 0, Input Capture 1, Input Capture 2, External Interrupt 1, External Interrupt 2

Interrupt จากภายใน Output Compare 1, Timer 1, Timer 2, Timer 3, UART1 Receiver, UART1Transmitter

ตัวอย่างการเขียนโปรแกรมบริการ INTERRUPT INTO

#include <30f2010.h>
#Fuses hs,noWDT
#Fuses BORV27
#fuses PUT64
#fuses BROWNOUT
#FUSES MCLR
#use delay(clock=10000000)

(#int_EXT0	\mathbf{i}	INTERRUPT
	void EXT0_isr(void)		SERVICE
	{		\geq
	OUTPUT_TOGGLE(PIN_A0);		
	}		
)	
	void main()		
	{		
	setup_wdt(WDT_OFF);		
	enABLE_INTERRUPTS(INT_EXT0);		
	ENABLE_INTERRUPTS(INTR_GLOBAL);		
	ext_int_edge(0, h_TO_I);		
	WHILE(TRUE)		
	{		
	}		
	}		

รูป 3.42 วงจรจำลองการทำงานของโปรแกรมบริการ EXTERNAL INTERRUPT INTO

โมดูล MOTOR CONTROL PWM

MOTOR CONTROL PWM MODULE ถูกออกแบบมาเพื่อตอบสนองการของวิศวกรออกแบบสำหรับ ประยุกต์ในการสร้างสัญญานควบคุมระบบที่เกี่ยวข้องกับพลังงานเป็นหลัก อาธิเช่น สร้างสัญญาณควบคุม DC TO DC CONVERTER, DC TO AC CONVERTER และ สนับสนุนการสร้างสัญญานควบคุมชุดขับเคลื่อนมอเตอร์ เช่น AC INDUCTION MOTOR, Switched Reluctance (SR) Motor และ Brushless DC (BLDC) Motor เป็นต้น

รูป 3.43 Block Diagram of Motor Control PWM

การที่เราจะใช้งานโมดูล MOTOR CONTROL PWM ได้อย่างมีประสิทธิภาพนั้นจำเป็น อย่างยิ่งที่จะต้องเข้าใจภาพรวมการทำงานของโมดูลให้มากที่สุด จากรูป() จะเห็นได้ว่ามีการแบ่ง การควบคุมออกเป็น 4 ส่วนด้วยกันคือ

- ้ส่วนของการกำหนดความถี่ของสัญญาณ PWM ประกอบด้วย REGISTER 1 PTMR.PTPER.PTCON เป็นต้น
- ส่วนของการกำหนด DUTY CYCLE คือ PDC1,PDC2 และ PDC3 2
- ้ส่วนของการกำหนดค่า DEAD TIME และ DISABLE OR ENABLE สัญญาณ PWM 3
- ส่วนของ BUFFER AND DRIVE สัญญาณ PWM 4

รายละเอียด REGISTER ที่ใช้ควบคุม โมดูล MOTOR CONTROL PWM

	PWMC	ON1: PWM C	Control Regis	ster 1			
Upper Byte	e:						
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	_	PMOD4	PMOD3	PMOD2	PMOD1
bit 15	•						bit 8

Lower Byte	e:						
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
PEN4H	PEN3H	PEN2H	PEN1H	PEN4L	PEN3L	PEN2L	PEN1L
bit 7							bit O

- bit 15-12 Unimplemented: Read as 'o'
- bit 11-8 PMOD4: PMOD1: PWM I/O Pair Mode bits 1 = PWM I/O pin pair is in the independent output mode 0 = PWM I/O pin pair is in the complementary output mode
- bit 7-4 PEN4H-PEN1H: PWMxH I/O Enable bits⁽¹⁾
 - 1 = PWMxH pin is enabled for PWM output
 - 0 = PWMxH pin disabled. I/O pin becomes general purpose I/O

PEN4L-PEN1L: PWMxL I/O Enable bits(1) bit 3-0

- 1 = PWMxL pin is enabled for PWM output
- 0 = PWMxL pin disabled. I/O pin becomes general purpose I/O
- Note 1: Reset condition of the PENxH and PENxL bits depend on the value of the PWM/PIN device configuration bit in the FBORPOR Device Configuration Register.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Register 15-6	: PWMC	ON2: PWM C	ontrol Regis	ster 2					
Upper Byte:									
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	_	_	_	SEVOPS<3:0>					
bit 15							bit 8		

Lower Byt	e:						
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	_	_	_	_	IUE	OSYNC	UDIS
bit 7							bit 0

- bit 15-12 Unimplemented: Read as '0'
- bit 11-8 SEVOPS<3:0>: PWM Special Event Trigger Output Postscale Select bits 1111 = 1:16 Postscale 0001 = 1:2 Postscale 0000 = 1:1 Postscale bit 7-2 Unimplemented: Read as '0' IUE: Immediate Update Enable bit(1) bit 2 1 = Updates to the active PDC registers are immediate 0 = Updates to the active PDC registers are synchronized to the PWM time base OSYNC: Output Override Synchronization bit bit 1 1 = Output overrides via the OVDCON register are synchronized to the PWM time base 0 = Output overrides via the OVDCON register occur on next Tcy boundary bit O UDIS: PWM Update Disable bit
 - 1 = Updates from duty cycle and period buffer registers are disabled

	DTCON1: Dead Time Control Register 1								
Upper Byte	:								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
DTBP	S<1:0>			DTB<	5: 0 >				
bit 15							bit 8		

Lower Byte	:						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DTAPS<1:0>				DTA<	5: 0 >		
bit 7							bit 0

bit 15-14 DTBPS<1:0>: Dead Time Unit B Prescale Select bits

- 11 = Clock period for Dead Time Unit B is 8 Tcy
- 10 = Clock period for Dead Time Unit B is 4 Tcy
 - 01 = Clock period for Dead Time Unit B is 2 Tcy
 - 00 = Clock period for Dead Time Unit B is Tcy

bit 13-8 DTB<5:0>: Unsigned 6-bit Dead Time Value bits for Dead Time Unit B

- bit 7-6 DTAPS<1:0>: Dead Time Unit A Prescale Select bits
 - 11 = Clock period for Dead Time Unit A is 8 Tcy
 - 10 = Clock period for Dead Time Unit A is 4 Tcy
 - 01 = Clock period for Dead Time Unit A is 2 Tcy
 - 00 = Clock period for Dead Time Unit A is TCY
- bit 5-0 DTA<5:0>: Unsigned 6-bit Dead Time Value bits for Dead Time Unit A

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	FLTACON: Fault A Control Register								
Upper By	yte:								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
FAOV4H	FAOV4L	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L		
bit 15							bit 8		
Lower B	yte:								
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
FLTAM	_	_	_	FAEN4	FAEN3	FAEN2	FAEN1		
bit 7							bit 0		
bit 15-8	FAOV4H-FAOV1L: Fault Input A PWM Override Value bits 1 = The PWM output pin is driven ACTIVE on an external fault input event 0 = The PWM output pin is driven INACTIVE on an external fault input event								
bit /	FLTAM: Fault A Mode bit 1 = The Fault A input pin functions in the cycle-by-cycle mode 0 = The Fault A input pin latches all control pins to the programmed states in FLTACON<15:8>								
bit 6-4	Unimplemente	ed: Read as '	0'						
bit 3	FAEN4: Fault Input A Enable bit 1 = PWM4H/PWM4L pin pair is controlled by Fault Input A 0 = PWM4H/PWM4L pin pair is not controlled by Fault Input A								
bit 2	FAEN3: Fault Input A Enable bit 1 = PWM3H/PWM3L pin pair is controlled by Fault Input A 0 = PWM3H/PWM3L pin pair is not controlled by Fault Input A								
bit 1	FAEN2: Fault Input A Enable bit 1 = PWM2H/PWM2L pin pair is controlled by Fault Input A 0 = PWM2H/PWM2L pin pair is not controlled by Fault Input A								
bit O	FAEN1: Fault I 1 = PWM1H/P 0 = PWM1H/P	nput A Enabl WM1L pin pa WM1L pin pa	e bit ir is controlled ir is not contr	d by Fault Inp olled by Faul	put A It Input A				

	FLIDCON. Fault D Control Register							
Upper Byte):							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FBOV4H	FBOV4L	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L	
bit 15							bit 8	

Lower Byte	e:						
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTBM	—	_	_	FBEN4	FBEN3	FBEN2	FBEN1
bit 7							bit 0

bit 15-8 FBOV4H:FBOV1L: Fault Input B PWM Override Value bits

FLTDCON, Fault D.Control Deviation

- 1 = The PWM output pin is driven ACTIVE on an external fault input event
- 0 = The PWM output pin is driven INACTIVE on an external fault input event
- bit 7 FLTBM: Fault B Mode bit
 - 1 = The Fault B input pin functions in the cycle-by-cycle mode
 - 0 = The Fault B input pin latches all control pins to the programmed states in FLTBCON<15:8>
- bit 6-4 Unimplemented: Read as '0'

bit 3	FAEN4: Fault Input B Enable bit ⁽¹⁾
	1 = PWM4H/PWM4L pin pair is controlled by Fault Input B
	0 = PWM4H/PWM4L pin pair is not controlled by Fault Input B
bit 2	FAEN3: Fault Input B Enable bit ⁽¹⁾
	1 = PWM3H/PWM3L pin pair is controlled by Fault Input B
	0 = PWM3H/PWM3L pin pair is not controlled by Fault Input B
bit 1	FAEN2: Fault Input B Enable bit ⁽¹⁾
	1 = PWM2H/PWM2L pin pair is controlled by Fault Input B

- 0 = PWM2H/PWM2L pin pair is not controlled by Fault Input B
- bit 0 FAEN1: Fault Input B Enable bit⁽¹⁾ 1 = PWM1H/PWM1L pin pair is controlled by Fault Input B 0 = PWM1H/PWM1L pin pair is not controlled by Fault Input B
 - Note 1: Fault pin A has priority over Fault pin B, if enabled.

OVDCON: Override Control Register

Upper Byte	e:							
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
POVD4H	POVD4L	POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L	
bit 15							bit 8	ï

Lower Byte: R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 POUT4H POUT4L POUT3H POUT3L POUT2H POUT2L POUT1H bit 7 Dit 15-8 POVD4H-POVD1L: PWM Output Override bits 1 = Output on PWMxx I/O pin is controlled by the PWM generator 0 = Output on PWMxx I/O pin is controlled by the value in the corresponding bit 7-0 POUT4H-POUT1L: PWM Manual Output bits 1 = PWMxx I/O pin is driven ACTIVE when the corresponding POVDxx bits	R/W-0 1 POUT1L bit 0							
R/W-0 R/W-0 <th< td=""><td>R/W-0 I POUT1L bit 0</td><td></td></th<>	R/W-0 I POUT1L bit 0							
POUT4H POUT4L POUT3H POUT3L POUT2H POUT2L POUT1H bit 7 bit 15-8 POVD4H-POVD1L: PWM Output Override bits 1 = Output on PWMxx I/O pin is controlled by the PWM generator 0 = Output on PWMxx I/O pin is controlled by the value in the correspondie bit 7-0 POUT4H-POUT1L: PWM Manual Output bits 1 = PWMxx I/O pin is driven ACTIVE when the corresponding POVDxx bit	I POUT1L bit 0							
bit 7 bit 15-8 POVD4H-POVD1L: PWM Output Override bits 1 = Output on PWMxx I/O pin is controlled by the PWM generator 0 = Output on PWMxx I/O pin is controlled by the value in the correspondi bit 7-0 POUT4H-POUT1L: PWM Manual Output bits 1 = PWMxx I/O pin is driven ACTIVE when the corresponding POVDxx bit	bit 0							
bit 15-8 POVD4H-POVD1L: PWM Output Override bits 1 = Output on PWMxx I/O pin is controlled by the PWM generator 0 = Output on PWMxx I/O pin is controlled by the value in the correspondi bit 7-0 POUT4H-POUT1L: PWM Manual Output bits 1 = PWMxx I/O pin is driven ACTIVE when the corresponding POVDxx bit								
bit 15-8 POVD4H-POVD1L: PWM Output Override bits 1 = Output on PWMxx I/O pin is controlled by the PWM generator 0 = Output on PWMxx I/O pin is controlled by the value in the corresponding POUTxx bit bit 7-0 POUT4H-POUT1L: PWM Manual Output bits 1 = PWMxx I/O pin is driven ACTIVE when the corresponding POVDxx bit is cleared 0 = PWMxx I/O pin is driven INACTIVE when the corresponding POVDxx bit is cleared								
Legend: R = Readable bit W = Writable bit U = Unimplemented, read as 'I								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared	d v – Bit	is unknow						

		PWM D	uty Cycle R	legister			
Upper Byte	:						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PW	/M Duty Cyc	le #1 bits 15	-8		
bit 15							bit 8
Lower Byte	:						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PW	/M Duty Cyc	le #1 bits 7-0)		
bit 7							bit O
	PDC2:	PWM Duty C	ycle Regist	ter 2			
Upper Byte	:		е. С				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PW	'M Duty Cyc	le #2 bits 15-	8		
bit 15							bit 8
Lower Byte	:						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PW	/M Duty Cyc	le #2 bits 7-0			
bit 7							bit O
Register 15-	14: PDC3:	: PWM Duty (Cycle Regis	ter 3			
Upper Byte	:						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PW	/M Duty Cyc	le #3 bits 15	-8		
bit 15							bit 8
Lower Byte):						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PV	VM Duty Cyc	:le #3 bits 7-()		
bit 7							bit 0

bit 15-0 (PDC1 PD2 PDC3) <15:0>: PWM Duty Cycle Value

	PTCO	N: PWM Tim	e Base Contr	rol Register				
Upper E	Byte:							
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
PTEN	_	PTSIDL	-	-	-	-	_	
bit 15							bit 8	
Lower F	lvte:							
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	PTOPS	6<3:0>		PTCKPS	<1:0>	PTMOD)<1:0>	
bit 7							bit 0	
bit 15	PTEN: PWM 1 1 = PWM time 0 = PWM time	îme Base Tir base is ON base is OFF	ner Enable bi	t				
bit 14	Unimplement	ed: Read as	0'					
bit 13	PTSIDL: PWN	1 Time Base \$	Stop in Idle M	ode bit				
	1 = PWM time 0 = PWM time	base halts in base runs in	CPU Idle mo CPU Idle mo	de de				
bit 12-8	Unimplement	ed: Read as	0'					
bit 7-4	PTOPS<3:0>: 1111 = 1:16 P	PWM Time E ostscale	Base Output F	ostscale Se	ect bits			
	•							
	•							
	0001 = 1:2 Po	stscale						
bit 3-2	0000 = 1:1 Po PTCKPS<1:0> 11 = PWM time 10 = PWM time 01 = PWM time 00 = PWM time	stscale : PWM Time e base input o e base input o e base input o e base input o	Base Input Cl lock period is lock period is lock period is lock period is	lock Prescale 64 Toy (1:6 616 Toy (1:10 64 Toy (1:10 64 Toy (1:4 press	e Select bits 4 prescale) 6 prescale) vrescale) vscale)	3		
oit 1-0	PTMOD<1:0>: 11 = PWM time 10 = PWM time 01 = PWM time 00 = PWM time	PWM Time E base operate base operate base operate base operate	ase Mode Se es in a contin es in a contin es in single e es in a free ru	elect bits uous up/dow uous up/dow vent mode unning mode	n mode wit	th interrupts mode	for double PWM	upda

	PTMR	: PWM Time	Base Regis	ster				
Upper Byte	e:							
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTDIR			F	PTMR <14:8>	•			
bit 15							bit 8)
Lower Byte	e:							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

PTMR <7:0>

PTDIR: PWM Time Base Count Direction Status bit (Read Only) bit 15 1 = PWM time base is counting down 0 = PWM time base is counting up

bit 14-0 PTMR <14:0>: PWM Timebase Register Count Value

bit 7

Register 15	-3: PTPER	R: PWM Time	e Base Peri	od Register							
Upper Byte	e:										
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_			F	TPER <14:8	>						
bit 15							bit 8				
Lower Byt	e:										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PTPER <7:0>										
bit 7							bit 0				

bit 15 Unimplemented: Read as '0'

bit 14-0 PTPER<14:0>: PWM Time Base Period Value bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 0

Register 15-4:	SEVTCMP: S	pecial Event	Compare Register

Upper Byte	e:									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SEVTDIR		SEVTCMP <14:8>								
bit 15							bit 8			

Lower Byte	e:									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	SEVTCMP <7:0>									
bit 7							bit 0			

bit 15 SEVTDIR: Special Event Trigger Time Base Direction bit⁽¹⁾

1 = A special event trigger will occur when the PWM time base is counting downwards.
 0 = A special event trigger will occur when the PWM time base is counting upwards.

bit 14-0 SEVTCMP <14:0>: Special Event Compare Value bit⁽²⁾

Note 1: SEVTDIR is compared with PTDIR (PTMR<15>) to generate the special event trigger.

2: SEVTCMP<14:0> is compared with PTMR<14:0> to generate the special event trigger.

REGISTER	ADDRESS
PTCON	0X01C0
PTMR	0X01C2
PTPER	0X01C4
SEVTCMP	0X01C6
PWMCON1	0X01C8
PWMCON2	0X01CA
DTCON	0X1CC
FLTA	0X1D0
FLTB	-
PDC1	0X01D6
PDC2	0X01D8
PDC3	0X01DA

ตารางแสดง ADDRESS ของ REGISTER ที่เกี่ยวข้องกับ MOTOR CONTROL PWM MODULE

การสร้างสัญญาณ PWM 6 ช่องในโหมด FREERUNER และ Continuous Up/Down Count mode

Free Running mode

<u>การคำนวณคาบเวลาของสัญญาณ PWM ในโหมด Free Running mode</u>

แสดงตัวอย่างการกำณวนก่าใน REGISTER PTPER

การเปลี่ยนแปลง DUTYCYCLE ของสัญญาณ PWM ในโหมด Free Running mode

รูป **3.45** แสดงความสัมพันธ์ของ REGISTER PTPER,PTMR,PDC ในการกำหนด DUTY CYCLE ของสัญญาณ PWM

Up/Down Counting Modes

รูป 3.46 แสดงความถี่ หรือ คาบเวลาของสัญญาณ PWM ที่ขึ้นอยู่กับค่าใน REGISTER PTER

PWM Period Calculation in Up/Down Counting Modes (PTMOD = 00 or 01)

 $PTPER = \frac{FCY}{FPWM \cdot (PTMR Prescaler) \cdot 2} - 1$

Example:

FCY = 20 MHz FPWM = 20,000 Hz PTMR Prescaler = 1:1

$$PTPER = \frac{20,000,000}{20,000 \cdot 1 \cdot 2} - 1$$
$$= 500 - 1$$
$$= 499$$

แสดงตัวอย่างการกำณวนก่าใน REGISTER PTPER <u>Up/Down Counting Modes</u>

รูป **3.47** แสดงความสัมพันธ์ของ REGISTER PTPER,PTMR,PDC ในการกำหนด DUTY CYCLE ของสัญญาณ PWM

ตัวอย่างโปรแกรมการสร้างสัญญาณในโหมด FREE RUNNING และ UP/DOWN COUNTING

#include <30f2010.h> #Fuses hs,noWDT #Fuses BORV27 #fuses PUT64 #fuses BROWNOUT **#FUSES MCLR** #use delay(clock=1000000) int16 PTCON; #locate PTCON = 0x1C0 //-----INT16 PTMR; #LOCATE PTMR = 0X1C2 INT16 PTPER; #LOCATE PTPER = 0X1C4 INT16 SEVTCPP; #LOCATE SEVTCPP = 0X1C6 INT16 PWMCON1; #locate PWMCON1 = 0x1c8 INT16 PWMCON2; #locate PWMCON2 = 0x1ca INT16 DTCON1; #LOCATE DTCON1 = 0X1CC

INT16 FLTACON;

```
#LOCATE FLTACON = 0X1D0
INT16 OVDCON;
#LOCATE OVDCON = 0X1D4
INT16 PDC1:
#LOCATE PDC1 = 0X1D6
INT16 PDC2;
#LOCATE PDC2 = 0X1D8
INT16 PDC3;
#LOCATE PDC3 = 0X1DA
void main(void)
{
 ptper=0x007D;
 ptmr=0x1ff;
 PWMCON1=0X0FFF;
 PWMCON2=0X0002;
 PTCON=0X8000;
 OVDCON=0XFF00;
 PDC1=PDC2=PDC3=100;
 while(true)
 {
}
}
  จากโปรแกรมคังกล่าวเป็นชุคคำสั่งขั้นพื้นฐานในการสร้างสัญญาณ PWM สิ่งที่ต้องเรียนรู้จากโปรแกรมก็
```

จากโปรแกรมคั้งกล่าวเป็นชุดคำสั่งขั้นพื้นฐานในการสร้างสัญญาณ PWM สิ่งที่ต้องเรียนรู้จากโปรแกรมก็ กือต้องเข้าใจความหมายของการกำหนดค่าลงใน REGISTER ที่ เกี่ยวข้องกับการสร้างสัญญาณ PWM ทั้งหมด เช่น PWMCON1 = 0X0FFF

	PWMCON1: PWM Control Register 1									
Upper Byte	e:									
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_	_	_	PMOD4	PMOD3	PMOD2	PMOD1			
· · · 0	0	0	0	1	1	1	1			
BIT 15 🔶							BIT 8			
Lower Byte	e:									
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
PEN4H	PEN3H	PEN2H	PEN1H	PEN4L	PEN3L	PEN2L	PEN1L			
1	1	1	1	1	1	1	1			

รูป 3.48 แสดงก่าแต่ละ bit ของ REGISTER PWMCON1

<u>ใช้ LOGIC ANALYZER ในโปรแกรม MPLAB IDE ตรวจสอบและเรียนรู้ค่าใน REGISTER</u>

รูป **3.49** ADD PIN PWM1H,PWM1L,PWM2H,PWM2L,PWM3H,PWM3L

รูป 3.50 Click Run สังเกต Progress bar ประมาณ 2 รอบแล้ว CLICK HALT

รูป **3.51** สัญญาณ PWM 6 CHANEL แกนเวลามีหน่วยเป็น MACHINE CYCLE

Typical Load for Complementary PWM Outputs

PWM Channel Block Diagram, Complementary Mode

คู่สัญญาณ PWMxH กับ PWMxL

BIT ที่ใช้ควบคุมการทำงานของคู่สัญญาณ PWM คือ PMOD1,PMOD2,PMOD3 ซึ่งจะคู่กับ PWM1,PWM2,PWM3 ตามลำดับ

ตัวอย่างการทำให้ ถู่ของสัญญาณ PWM1 เป็น Complementary

ถูป **3.53** PMOD1 = 0 PWM1 ทำงานเป็น Complementary

รูป **3.54** คู่ PWM1 เป็น Complementary

การกำหนดค่า DEAD TIME ให้กับคู่สัญญาณ PWM ที่เป็น Complementary

คู่สัญญาณ PWM ที่เป็น Complementary_ จำเป็นที่จะต้องพิจารณาในเรื่องของค่า DEAD TIME เนื่องจากข้อจำกัดทางเวลา TURN OFF ของอุปกรณ์ ELECTRONIC SWITCHING ที่อยู่ในวงจรคังรูป ข้างล่าง

รูป **3.55** วงจร SWITCHING ที่จำเป็นต้องมี่ค่า DEAD TIME

ตัวอย่างโปรแกรมในการกำหนดค่า DEAD TIME

DT = Dead Time
Prescale Value • TCY

DT (Dead Time) is the DTA<5:0> or DTB<5:0> register value.

การคำณวณค่า DEAD TIME

จากโปรแกรม DTCON1=0X00FF;

Lower Byte): 						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
1	1	1	1	1	1	1	1

DT = 111111b = 64d; Prescale = 8; TCY = 2000000/4 = 5000000

Dead Time = $(1/500000) \times 8 \times 64 = 102$ usec

<u>การใช้ INPUT FAULT PINS ในการป้องกันความผิดปกติในภาคขยายกำลังไฟฟ้า</u>

INPUT FAULT PINS เป็นที่ใช้รองรับการพัฒนาโปรแกรมในการตรวจสอบความผิดปกติในส่วนของ ภาคขยายกำลัง เช่น กระแสเกินพิกัด หรือ เกิดการลัดวงจร เป็นต้น

<u>ตัวอย่างโปรแกรม การใช้งาน FAULT PIN</u>

#include <30f2010.h> #device adc=8 #Fuses XT_PLL16 #Fuses BORV27 #fuses PUT64 #fuses BROWNOUT **#FUSES MCLR** #use delay(clock=160000000,restart wdt) #use rs232(UART1,baud=19200,parity=N,bits=8,) int16 PTCON; #locate PTCON = 0x1C0INT16 PTMR; #LOCATE PTMR = 0X1C2 INT16 PTPER; #LOCATE PTPER = 0X1C4 INT16 SEVTCPP; #LOCATE SEVTCPP = 0X1C6 INT16 PWMCON1: #locate PWMCON1 = 0x1c8 INT16 PWMCON2; #locate PWMCON2 = 0x1ca INT16 DTCON1; #LOCATE DTCON1 = 0X1CC INT16 FLTACON; #LOCATE FLTACON = 0X1D0 INT16 OVDCON; #LOCATE OVDCON = 0X1D4 INT16 PDC1; #LOCATE PDC1 = 0X1D6 INT16 PDC2; #LOCATE PDC2 = 0X1D8 INT16 PDC3; #LOCATE PDC3 = 0X1DA

void main(void)

{
 ptper=0x0080;
 PWMCON2=0X0F00;
 PWMCON1=0X00FF;
 PWMCON2=0X0F00;
 PTCON=0X8000;
 OVDCON=0XFF00;
 PDC1=PDC2=PDC3=0;
 FLTACON=0x000F;

while(true)
{
 restart_wdt();
 }
}

การสร้างชุดควบคุม BRUSHLESS DC MOTOR แบบลูปเปิดด้วย DSPIC30F2010

ดังที่ได้กล่าวมาแล้วในข้างต้นว่าระบบควบคุมแบบสมองกลฝังตัวนั้นมีข้อได้เปรียบกว่าระบบควบคุม แบบเดิม ๆ ที่มีส่วนของ HARDWARE เพียงอย่างเดียวมาก เนื่องจากมีความยืดหยุ่นสูง ทั้งในการตรวจสอบ ข้อบกพร่องของระบบ และ การพัฒนาปรับปรุงในวันข้างหน้า อีกทั้งสนับสนุนการติดต่อสื่อสารกับอุปกรณ์ ภายนอก เช่น คอมพิวเตอร์ หรือ อุปกรณ์สื่อสาร อื่น ๆ อีกมาก เนื่องจากองค์ประกอบของ DSPIC30F2010 มี ส่วนของโมดูลติดต่อสื่อสารกับอุปกรณ์อยู่หลายอย่าง เช่น UART1, UART2,SPI1,SPI1,CAN1 และ CAN2 เป็นต้น อีกทั้งการใช้ DSPIC2010 เป็นการยุบรวม BLOCK ต่าง ๆ ที่ใช้การควบคุมแบบลอจิกเกตุ ซึ่งจะ เปรียบเทียบให้เห็นดังรูป

รูป **3.59** เปรียบ Block Diagram การสร้างชุดควบคุม Brushless Dc Motor ระบบดิจิตอลด้วนลอจิกเกตุกับ ระบบสมองกลฝังตัวโดยใช้ DSPIC30F2010 เป็นหน่วยประเมินผลกลาง

<u>โปรแกรมควบคุมการขับเคลื่อน BrushLess Dc Motor</u>

//Hall effect PIN_B3-->Blue:PIN_b4-->Green:PIN_b5-->Yellow
#include <30F2010.h>
#device adc=8
#Fuses XT_PLL16
#Fuses BROWNOUT
#Fuses noMCLR
#Fuses noMCLR
#Fuses PUT4
#Fuses NOWDT
#fuses WPSB10
#use delay(clock=160000000,restart_wdt)
#use rs232(UART1,baud=19200,parity=N,bits=8,)
//#FUSES HPOL_low //High.Side Transistors Polarity is Active.High (PWM 1,3,5 and 7)
//#FUSES LPOL_low //Low.Side Transistors Polarity is Active.Low (PWM 0,2,4 and 6)

int16 trisB;

INT16 PTMR;

INT16 PTPER; #LOCATE PTPER = 0X1C4 INT16 SEVTCMP; #LOCATE SEVTCMP = 0X1C6 INT16 PWMCON1; #locate PWMCON1 = 0x1c8 INT16 PWMCON2; #locate PWMCON2 = 0x1ca INT16 DTCON1; #LOCATE DTCON1 = 0X1CC int16 ifs2; #locate ifs2=0x088 INT16 FLTACON; #LOCATE FLTACON = 0X1D0 INT16 OVDCON; #LOCATE OVDCON = 0X1D4 INT16 PDC1; #LOCATE PDC1 = 0X1D6 INT16 PDC2; #LOCATE PDC2 = 0X1D8 INT16 PDC3; #LOCATE PDC3 = 0X1DA INT16 CONST TABLE_FW[]={0x0000,0x2001,0x0810,0x0801,0x0204,0x2004,0x0210}; INT16 CONST TABLE_RW[]={0x0000,0x0210,0x2004,0x0204,0x0801,0x0810,0x2001}; INT8 INDEX, TEMPINDEX; int16 n; int16 duty;

```
#int_TIMER1
void TIMER1_isr(void)
{set_timer1(500);
set_adc_channel( 0 );
duty = read_adc();
pdc1= pdc2= pdc3=duty;
clear_interrupt(int_timer1);
```

```
}
```

```
void main(void)
{
 setup_wdt (WDT_OFF);
 trisb3=trisb4=trisb5=1;
 ptper=0x0080;
PTCON=0X8000;
 SEVTCMP=ptper;
 PWMCON1=0X0FFF;
 PWMCON2=0X0F00;
 PDC1=PDC2=PDC3=0; OVDCON=TABLE_FW[0];
 INDEX=0;
 SETUP_ADC_PORTS(sAN0|VSS_VDD );
 SETUP_ADC(ADC_CLOCK_INTERNAL);
 enable interrupts(INTR GLOBAL);
 ENable_interrupts(INT_TIMER1);
 setup_timer1(TMR_INTERNAL|TMR_DIV_BY_8); set_timer1(500);
 n=0;duty=200;
 WHILE(N<5)
 {
 OUTPUT_TOGGLE(PIN_c14);
 DELAY_MS(1000);
 N++;
 }
 OUTPUT_HIGH(PIN_c14);
 while(true)
 INDEX=hall data.data;
 IF(INDEX!=TEMPINDEX)
 {
 OVDCON=TABLE_FW[INDEX];
 }
 TEMPINDEX=INDEX;
    n++;
  if(n>30000)
   {
  output_toggle(PIN_c14); n=0;
   }
  }
}
```

{

สำเริง เต็มราม นักพัฒนาทรัพยากรบุคคลชำนาญการ สำนักพัฒนาสมรรถนะครูและบุคลากรอาชีวศึกษา 14-07-2012 65